8. (B) Program for Polynomial Regression.
| ||
| sumy=0; | ||
| sumx=0; | ||
| m=2; | ||
| n=6; | ||
| s=0; | ||
| xsqsum=0; | ||
| xcsum=0; | ||
| x4sum=0; | ||
| xysum=0; | ||
| x2ysum=0; | ||
| rsum=0; | ||
| usum=0; | ||
| for i=1:6 | ||
| sumy=sumy+y(i); | ||
| sumx=sumx+x(i); | ||
| r(i)=(y(i)-s/n)^2; | ||
| xsqsum=xsqsum+x(i)^2; | ||
| xcsum=xcsum+x(i)^3; | ||
| x4sum=x4sum+x(i)^4; | ||
| xysum=xysum+x(i)*y(i); | ||
| x2ysum=x2ysum+y(i)*x(i)^2; | ||
| rsum=r(i)+rsum; | ||
| end | ||
| disp(sumy,"sum y=") | ||
| disp(sumx,"sum x") | ||
| xavg=sumx/n; | ||
| yavg=sumy/n; | ||
| disp(xavg,"xavg=") | ||
| disp(yavg,"yavg=") | ||
| disp(xsqsum,"sum x^2=") | ||
| disp(xcsum,"sum x^3=") | ||
| disp(x4sum,"sum x^4=") | ||
| disp(xysum,"sum x*y=") | ||
| disp(x2ysum,"sum x^2*y=") | ||
| J=[n,sumx,xsqsum;sumx,xsqsum,xcsum;xsqsum,xcsum,x4sum]; | ||
| I=[sumy;xysum;x2ysum]; | ||
| X=inv(J)*I; | ||
| a0=det(X(1,1)); | ||
| a1=det(X(2,1)); | ||
| a2=det(X(3,1)); | ||
| for i=1:6 | ||
| u(i)=(y(i)-a0-a1*x(i)-a2*x(i)^2)^2; | ||
| usum=usum+u(i); | ||
| end | ||
| disp(r,"(yi-yavg)^2=") | ||
| disp(u,"(yi-a0-a1*x-a2*x^2)^2=") | ||
| plot(x,y); | ||
| xtitle('x vs y','x','y'); | ||
| syx=(usum/(n-3))^0.5; | ||
| disp(syx,"The standard error of the estimate based on regression polynomial=") | ||
| R2=(rsum-usum)/(rsum); | ||
| disp("%",R2*100,"Percentage of original uncertainty that has been explained by the model=") | ||
8. (B) Program for Polynomial Regression.
Reviewed by admin
on
December 24, 2019
Rating:
No comments: