3. (A) Program for Newton’s forward interpolation
| ||
| y=[24 120 336 720]; | ||
| h=2 | ||
| c=1; | ||
| for i=1:3 | ||
| d1(c)=y(i+1)-y(i); | ||
| c=c+1; | ||
| end | ||
| c=1; | ||
| for i=1:2 | ||
| d2(c)=d1(i+1)-d1(i); | ||
| c=c+1; | ||
| end | ||
| c=1; | ||
| for i=1:1 | ||
| d3(c)=d2(i+1)-d2(i); | ||
| c=c+1; | ||
| end | ||
| d=[d1(1) d2(1) d3(1)]; | ||
| x0=8; | ||
| pp=1; | ||
| y_x=y(1); | ||
| p=(x0-1)/2; | ||
| for i=1:3 | ||
| pp=1; | ||
| for j=1:i | ||
| pp=pp*(p-(j-1)) | ||
| end | ||
| y_x=y_x+(pp*d(i))/factorial(i); | ||
| end | ||
| printf('value of function at %f is:%f',lx0,y_x); |
3. (A) Program for Newton’s forward interpolation
Reviewed by admin
on
December 24, 2019
Rating:
No comments: